
These publication and contributions were presented at CLOSER 2015
CLOSER 2015 Web site: http://closer.scitevents.org/?y=2015

© 2015 SciTePress. Personal use of this material is permitted. However,
permission to reprint/republish this material for advertising or
promotional purposes or for creating new collective works for resale or
redistribution to servers or lists, or to reuse any copyrighted component
of this work in other works must be obtained from the SciTePress.

@inproceedings{Breitenbuecher2015_CLOSER,
 author = {Uwe Breitenb{\"u}cher and Tobias Binz and Oliver Kopp and Frank
 Leymann and Johannes Wettinger},
 title = {A Modelling Concept to Integrate Declarative and Imperative
 Cloud Application Provisioning Technologies},
 booktitle = {Proceedings of the 5th International Conference on Cloud
 Computing and Services Science (CLOSER)},
 year = {2015},
 pages = {487-496},
 publisher = {SciTePress}
}

:

Institute of Architecture of Application Systems

Institute of Architecture of Application Systems,
University of Stuttgart, Germany,

lastname@iaas.uni-stuttgart.de

A Modelling Concept to Integrate Declarative and Imperative

Cloud Application Provisioning Technologies

Uwe Breitenbücher, Tobias Binz, Oliver Kopp, Frank Leymann, Johannes Wettinger

http://closer.scitevents.org/?y=2015

A Modelling Concept to Integrate Declarative and Imperative
Cloud Application Provisioning Technologies

Uwe Breitenbücher1, Tobias Binz1, Oliver Kopp1,2, Frank Leymann1, Johannes Wettinger1

1IAAS, 2IPVS, University of Stuttgart, Stuttgart, Germany
{breitenbuecher, lastname}@iaas.uni-stuttgart.de

Keywords: Cloud Application Provisioning, Automation, Declarative Modelling, Imperative Modelling

Abstract: Efficient application provisioning is one of the most important issues in Cloud Computing today. For that
purpose, various provisioning automation technologies have been developed that can be generally categorized
into two different flavors: (i) declarative approaches are based on describing the desired goals whereas (ii) im-
perative approaches are used to describe explicit sequences of low-level tasks. Since modern Cloud-based
business applications become more and more complex, employ a plethora of heterogeneous components and
services that must be wired, and require complex configurations, the two kinds of technologies have to be in-
tegrated to model the provisioning of such applications. In this paper, we present a process modelling concept
that enables the seamless integration of imperative and declarative provisioning models and their technologies
while preserving the strengths of both flavors. We validate the technical feasibility of the approach by applying
the concept to the workflow language BPEL and evaluate its features by several criteria.

1 INTRODUCTION

With the growing adoption of Cloud Computing
in enterprises, the rapid and reliable provisioning of
Cloud applications becomes a more and more impor-
tant task. Especially the increasing number of avail-
able Cloud services offered by providers, e. g., Ama-
zon and Google, provide powerful Cloud properties
such as automatic elasticity, self-service, or pay-per-
use features that are provided completely by the au-
tonomous management capabilities of Cloud environ-
ments (Leymann, 2009). Due to this trend, more
and more business applications are outsourced to the
Cloud (Binz et al., 2014). As a result, Cloud-based
business applications become (i) increasingly com-
plex and (ii) employ a plethora of heterogeneous soft-
ware, middleware, and XaaS components offered by
different providers including non-trivial dependencies
among each other. Consequently, the provisioning
of such applications becomes a serious management
challenge: (i) different kinds of Cloud offerings (IaaS,
PaaS, SaaS, etc.) must be provisioned and (ii) com-
plex configurations are required to setup and wire in-
volved components. This typically requires the com-
bination of multiple management technologies, espe-
cially if the application components are distributed
across multiple Clouds (Breitenbücher et al., 2013).

However, combining (i) proprietary APIs,
(ii) non-standardized configuration management
tools, and (iii) different virtualization technologies
in a single automated provisioning process is a
complex modelling and integration challenge using
traditional approaches such as workflows. The main
reason for this complexity results from the nature of
technologies that have to be combined: There are
declarative technologies, such as Chef (Opscode,
Inc., 2015; Nelson-Smith, 2013) or Puppet (Puppet
Labs, Inc., 2015), which only describe the desired
goal state of application components without specify-
ing the actual tasks that have to be executed to reach
this state. Imperative technologies, e. g., scripts or
workflows, explicitly specify each technical step to
be executed in detail. Although there are technologies
for orchestrating imperative approaches with each
other homogeneously (Kopp et al., 2012), combining
declarative and imperative approaches results in
implementing huge amounts of wrapper code as the
two flavors are hardly interoperable with each other
as there is no means to orchestrate them seamlessly.

In this paper, we tackle these issues. The first
contribution is a detailed state of the art analysis of
declarative and imperative provisioning approaches
including a critical evaluation. To tackle the ana-
lyzed issues, we present a modelling approach that

enables integrating declarative and imperative provi-
sioning models and the corresponding technologies
seamlessly. We introduce the concept of Declarative
Provisioning Activities that allows describing declar-
ative goals directly in the control and data flow of an
imperative workflow model. Based on our approach,
developers are able to model provisioning workflows
that specify not only imperative statements but declar-
ative statements as well—without polluting the model
with technical integration details. The approach en-
ables to benefit from the strengths of both flavors:
Declarative models can be used to specify high-level
management goals, whereas imperative logic enables
modelling complex cross-cutting configuration and
wiring tasks on a very low level of technical abstrac-
tion. We validate the technical feasibility of the ap-
proach by presenting a prototypical implementation,
which is integrated in the standards-based Cloud man-
agement ecosystem OpenTOSCA (Binz et al., 2013;
Breitenbücher et al., 2014; Kopp et al., 2013) and the
imperative workflow language BPEL (OASIS, 2007).
We evaluate the approach by several criteria based on
the conducted analysis and discuss its limitations.

The remainder of this paper is structured as fol-
lows: In Section 2, we conduct a detailed analy-
sis regarding declarative and imperative provisioning
technologies as well as combination concepts. Sec-
tion 3 presents our approach of Declarative Provision-
ing Activities, which is validated in terms of a proto-
typical implementation in Section 5 and evaluated in
Section 6. Section 7 concludes the paper and gives an
outlook on future work.

2 STATE OF THE ART ANALYSIS

In this section, we conduct a detailed state of the
art analysis of declarative and imperative provisioning
approaches and existing technologies including a crit-
ical evaluation. Afterwards, we discuss related work
that attempts to combine the two flavors.

2.1 The Declarative Flavor

Declarative approaches can be used to describe the
provisioning of an application by modelling its de-
sired goal state, which is enforced by a declarative
provisioning system. They typically employ domain-
specific languages (DSLs) (Günther et al., 2010) to
describe goals in a declarative way, i. e., only the
what is described without providing any details about
the technical how. For example, a declarative spec-
ification may describe that a Webserver has to be
installed on a virtual machine, but without specify-

ing the technical tasks that have to be performed to
reach this goal. The main strength of declarative ap-
proaches is that the technical provisioning logic, i. e.,
the technical tasks to be performed, is inferred au-
tomatically by the provisioning system, which eases
modelling provisionings as the technical execution
details are hidden (Herry et al., 2011). One of the
most prominent examples of declarative provisioning
description languages is Amazon CloudFormation1.
This JSON-based language enables to describe the de-
sired application deployment using Amazon’s Cloud
services including their configuration in a declara-
tive model, which is consumed to fully automatically
setup the application. In comparison to such provider-
specific languages, which quickly lead to a vendor
lock-in, provider-independent technologies were de-
veloped such as Puppet (Puppet Labs, Inc., 2015).

Due to the automatic inference of provisioning
logic, declarative systems have to understand the
declared statements. This restricts declarative pro-
visioning capabilities to standard component types
and predefined semantics that are known by the run-
time (Breitenbücher et al., 2014). Thus, individual
customizations for the provisioning of complex ap-
plication structures cannot be realized arbitrarily and
have to comply with the general, overall provision-
ing logic. As a consequence, the declarative approach
is rather suited for applications that consist of com-
mon components and configurations, but is limited
in terms of deploying big, complex business appli-
cations that require specific configurations with non-
trivial component dependencies. Even mechanisms to
integrate script executions, API calls, or service invo-
cations at certain points in their deployment lifecycle,
as supported by many declarative approaches, do of-
ten not provide the required flexibility as the overall
logic cannot be changed arbitrarily. As the integration
of other technologies is often not supported natively,
models get polluted by glue and wrapper code, which
results in complex models including low-level techni-
cal integration details (Wettinger et al., 2014). Nev-
ertheless, the declarative flavor is very important due
to (i) native support by Cloud providers and (ii) huge
communities providing reusable artifacts.

2.2 The Imperative Flavor

In contrast to the declarative flavor, the imperative
provisioning approach enables developers to specify
each technical detail about the provisioning execution
by creating an explicit process model that can be ex-
ecuted fully automatically by a runtime. Imperative
models define (i) the control flow of activities, (ii) the

1http://aws.amazon.com/cloudformation/

http://aws.amazon.com/cloudformation/

data flow between them, as well as (iii) all techni-
cal details required to execute these activities. Thus,
compared to declarative approaches, they describe not
only what has to be done, but also how the provision-
ing tasks have to be executed. Imperative processes
are typically implemented using (i) programming lan-
guages such as Java, (ii) scripting languages, e. g.,
Bash or Python, and (iii) workflow languages such
as BPEL (OASIS, 2007) or BPMN (OMG, 2011).
However, programming and scripting languages are
not suited for the provisioning of serious business
applications as they are not able to provide the ro-
bust and reliable execution features that are supported
by the workflow technology (Leymann and Roller,
2000; Herry et al., 2011). Since general-purpose
workflow languages do not natively support modeling
features for application provisioning, we developed
BPMN4TOSCA (Kopp et al., 2012), which is a BPMN
extension that supports API calls, script-executions,
and service invocations based on the TOSCA stan-
dard (OASIS, 2013) (a standard to describe Cloud ap-
plications). This language can be used to seamlessly
integrate such tasks as it provides a separate activity-
type for each of them. However, BPMN4TOSCA lacks
support for the direct integration of declarative provi-
sioning technologies, which need to be wrapped for
their invocation. Thus, similar to general-purpose
technologies, seamlessly integrating domain-specific
technologies into one process is not possible. To wrap
management technologies, we presented a manage-
ment bus that provides a unified API for the invoca-
tion of arbitrary technologies (Wettinger et al., 2014).
However, invoking the bus obfuscates the actual tech-
nical statements, which impedes maintaining and un-
derstanding process models.

Imperative approaches are suited to model com-
plex provisionings that employ a plethora of hetero-
geneous components, especially for multi-cloud ap-
plications (Petcu, 2014). As they provide full control
over the tasks to be executed, imperative models are
able to automate exactly the manual steps that would
be executed by a human administrator who provisions
the application manually. Thus, while declarative ap-
proaches are rather suited for standard provisionings,
imperative approaches enable developers to define ar-
bitrary provisioning logic. The main drawback of the
imperative approaches results from the huge amount
of statements that must be modelled since the runtime
infers no logic by itself. Consequently, manual pro-
cess authoring is a labor-intensive, time-consuming,
and error-prone task that requires a lot of low-level,
technical expertise in different fields (Breitenbücher
et al., 2014; Breitenbücher et al., 2013): Heteroge-
neous services need to be orchestrated (e. g., SOAP-

based and RESTful provider APIs), low-level tech-
nologies must be integrated, and, especially, declara-
tive technologies must be wrapped. As currently no
technology supports the seamless integration of both
flavors, their orchestration results in large, polluted,
technically complex processes that require multiple
different wrappers to support the various invocation
mechanisms and protocols (Wettinger et al., 2014).
These wrappers decrease the transparency as only
simplified interfaces are exposed to the orchestrating
process while the technical details, which are in many
cases of vital importance to avoid errors when mod-
elling multiple steps that depend on each other, are
abstracted completely. In addition, wrappers signif-
icantly impede maintaining processes as not simply
the orchestration process has to be adapted, but wrap-
per code needs to be modified and built again, too.

2.3 Integration Approaches

In this section, we present related work that attempts
to combine both flavors. There are several gen-
eral purpose concepts that attempt to bridge the gap
between imperative provisioning logic and declara-
tive models which generate provisioning workflows
by analyzing the declarative specifications (Breit-
enbücher et al., 2014; Breitenbücher et al., 2013;
Eilam et al., 2011; Keller et al., 2004; El Maghraoui
et al., 2006; Herry et al., 2011; Levanti and Ran-
ganathan, 2009; Mietzner, 2010). These approaches
are able to interpret declarative specifications mod-
elled using a domain-specific modelling language for
generating provisioning plans, which can be exe-
cuted fully automatically. The advantage of these
approaches is the full control over the executed pro-
visioning steps as the resulting workflows can be
adapted and configured arbitrarily. However, the
complexity, lack of transparency, and the polluted
control and data flows of the resulting workflows are
still problems that impede extending the plans if cus-
tomization is required. Thus, the approach we present
in this paper may be applied to these technologies for
improving the quality of the generated processes. As
a result of the discussion in this section, to ensure cor-
rect operation and to ease the creation of complex pro-
visioning processes for non-trivial business applica-
tions, it is of vital importance to employ an extensible
orchestration approach that supports the seamless or-
chestration of imperative and declarative provisioning
technologies. Therefore, the main goals of this paper
are (i) a seamless integration of declarative and im-
perative provisioning modelling approaches as well as
(ii) the orchestration of the corresponding provision-
ing technologies through workflow models.

{s1, s2, …, sn}

 Imperative Statements

IPE

{g1, g2, …, gn}

 Declarative Statements

…
DPE

Data

Figure 1: Concept of the direct integration approach.

3 INTEGRATED MODELLING

In this section, we present an approach that en-
ables integrating declarative and imperative provi-
sioning models seamlessly into the control and data
flow of an imperative workflow. In Section 3.1, we
introduce the abstract concept of the approach in a
technology-independent manner and define data han-
dling concepts in Section 3.2. In Section 4, we apply
the approach to the workflow language BPEL in or-
der to show how the concept can be realized using a
concrete standardized workflow language.

3.1 Declarative Provisioning Activities

The general modelling approach is shown in Fig-
ure 1 and based on extending standardized, imperative
workflow languages such as BPMN or BPEL by the
concept of Declarative Provisioning Activities. These
activities enable to specify declarative provisioning
goals directly in the control flow of a workflow model
that describes the tasks to provision a certain applica-
tion. To present the conceptual contribution indepen-
dently from a concrete workflow language, we first
introduce the general concept in an abstract way and
show its applicability to the standardized workflow
language BPEL afterwards. Therefore, in this section,
we distinguish only between (i) Imperative Provision-
ing Activities and (ii) Declarative Provisioning Activ-
ities that abstract from concrete realizations of pro-
visioning tasks in different workflow languages. Of
course, other control and data flow constructs, such
as events and gateways, are also required to model
executable processes. However, these are language-
specific and do not influence the presented concept.

An Imperative Provisioning Activity (IPA) de-
scribes a technically detailed execution of a provi-
sioning task as a sequence of one or more impera-
tive statements. This can be, for example, a script
implemented in Python or a simple HTTP-POST re-
quest that specifies a URL and data to be sent. Thus,

the term is an abstraction of several existing impera-
tive approaches such as scripts and programs that im-
plement a workflow activity or the invocation of an
API etc. The modeling and execution of such Impera-
tive Provisioning Activities is supported natively by
many workflow languages through general-purpose
concepts or by domain-specific extensions, respec-
tively. For example, BPMN natively supports the exe-
cution of script-tasks (OMG, 2011), the BPEL exten-
sion BPEL4REST (Haupt et al., 2014) enables send-
ing arbitrary HTTP requests, and BPMN4TOSCA na-
tively supports orchestrating provisioning operations
based on the TOSCA-standard—especially the exe-
cution of configuration scripts on a target VM (Binz
et al., 2013; Wettinger et al., 2014). This enables or-
chestrating arbitrary provisioning tasks using work-
flows that describe the technical details required for
the automated provisioning of complex applications.

In contrast to this, we introduce the new con-
cept of Declarative Provisioning Activities (DPA) in
this paper that enables specifying desired provision-
ing goals in a declarative manner. A DPA consists
of a set of declarative statements that describe what
has to be achieved, e. g., a desired configuration of
a certain application component, but without speci-
fying any technical details about how to achieve the
declared goals. Similar to other activity-constructs
of workflow languages, Declarative Provisioning Ac-
tivities are modelled directly in the control and data
flow of the process model the same way as IPAs. This
enables combining Imperative and Declarative Provi-
sioning Activities intuitively while preserving a clear
understanding about the overall flow. The operational
semantics of Declarative Provisioning Activities are
defined as follows: If the control flow reaches the ac-
tivity, the declarative statements, i. e., the modelled
goals, are enforced by the runtime that executes the
workflow. The activity is executed until all goals are
achieved and all affected application components are
in the desired state specified by the DPA. Then, the
activity completes and the control flow continues fol-
lowing the links to the next activities. Process models
that contain both provisioning activity types are called
Integrated Provisioning Models in this paper.

Figure 2 shows an example of an Integrated Pro-
visioning Model that contains two Imperative Pro-
visioning Activities and one Declarative Provision-
ing Activity, which (i) instantiate a virtual machine,
(ii) install a MySQL-database, and (iii) install an
Apache Webserver on the virtual machine. The first
IPA is an HTTP request to an API of a Cloud provider
or an infrastructure virtualization technology that trig-
gers the instantiation of the virtual machine. The
activity specifies the request including all required

… …
apt-get update

apt-get -y install mysql-server

mysql -u root -h localhost pDB < db_data.sql

TargetVM: var [IP-Address]
Credentials: var [Credentials]

Install MySQL-Database (IPA)

package 'apache_httpd' do
 http_port 8080
 https_port 8081
 ensure 'installed'
end
package 'php5_mod' do
 ensure 'installed'
end

TargetVM: var [IP-Address]
Credentials: var [Credentials]

Install Apache Webserver (DPA)

HTTP
POST

Create VM (IPA)

Figure 2: Simplified example of an Integrated Provisioning Model that (i) instantiates a virtual machine, (ii) installs a database,
and (iii) installs a Webserver on the virtual machine (We omitted some tasks for reasons of space).

configuration parameters and invokes the API corre-
spondingly. After waiting for the successful instanti-
ation, the IP-address and SSH credentials of the VM,
which can be polled at the API, are stored in two vari-
ables of the workflow model: “IP-Address” and “Cre-
dentials”. As these are standard tasks, we omit details
in the figure for reasons of space.

The second IPA installs a MySQL database on
the VM: The shown activity uses a low-level Bash
script that imperatively specifies statements to be ex-
ecuted to install the database and to import a refer-
enced SQL-file, which is uploaded to the VM by an
IPA (omitted in the figure). To copy and execute this
script on the VM, the process variables that store the
IP-Address and SSH credentials of the target VM are
used by the IPA to access the virtual machine via SSH
and to execute the imperatively specified statements.

To model the installation and configuration of the
Apache Webserver on the virtual machine, the DSL of
the configuration management technology Chef (Op-
scode, Inc., 2015) is used to declaratively define the
desired installation. Consequently, a Declarative Pro-
visioning Activity is modelled that specifies the de-
sired goals by declaratively describing the state and
configuration of the Webserver that has to be enforced
when executing the activity. Similarly to the second
script-based IPA, the activity employs the same pro-
cess variables to access the virtual machine.

This example shows that the direct integration of
declarative and imperative languages and technolo-
gies in one orchestration process provides a powerful
modeling approach as the corresponding imperative
programming or scripting-languages, respectively, as
well as the domain-specific languages of declarative
approaches can be used seamlessly in one process
model. Therefore, there is no need to write complex
wrapper code or to invoke services wrapping these
technologies that pollute the process model. Thus,
the approach enables using the right technology for
the right task while ensuring full-control over their
orchestration without polluting the workflow model.

3.2 Data Handling

Both types of activities exchange data within the
workflow. Therefore, we define three concepts in-
cluding their operational semantics that enable de-
scribing the data flow between provisioning activi-
ties: (i) Input parameters, (ii) output parameters, and
(iii) content injection. We continue abstracting from
individual data storage concepts of workflow lan-
guages by simply referring to “process variables” and
show in the next section how these concepts can be
realized in the concrete workflow language BPEL.

As shown in Figure 2, the script-activity and the
declarative Chef-activity reference process variables
(“IP-Address” and “Credentials”) that are assigned to
a “TargetVM” and a “Credentials” attribute of the ac-
tivities. These attributes represent predefined activity-
specific input parameters of the activity implementa-
tion. When the activity gets executed by the work-
flow, the runtime copies the content of the referenced
process variables “by value” and takes them as input
parameters for invoking the implementation.

To exchange produced data between DPAs and
IPAs, both may specify output parameters that con-
tain the results of their execution. Each output pa-
rameter is represented as a pair of (i) activity-internal
data reference and (ii) workflow process variable. An
activity-internal data reference is a reference to a data
container in the language of the activity. For exam-
ple, an environment variable of a script. When the
execution of the statements is finished, the referenced
data is copied by the activity implementation to the
specified process variables “by value”.

Content injection enables using process variables
directly in the declarative or imperative language of a
provisioning activity. These serve as placeholders that
are replaced by the current content of the referenced
variable when the execution of the activity starts. For
example, a script may use the variable “IP-Address”
to write the IP of the VM into firewall rules to enable
accessing the Webserver from the outside.

1 <extensionActivity>
2 <REST:POST ResponseVar="VMCreationResponse"
3 URL="https://ec2.amazonaws.com/?Action=RunInstances
4 &ImageId=ami-31814f58
5 &InstanceType=m1.small&..." />
6 </extensionActivity>
7 ...
8 <extensionActivity>
9 <DPA:Chef TargetVM="$bpelvar[IP-Address]" Credentials="$bpelvar[Credentials]">

10 package 'apache_httpd' do
11 http_port $bpelvar[HTTPPort]
12 https_port 8081
13 ensure 'installed'
14 end ...
15 </DPA:Chef>
16 </extensionActivity>

Listing 1: Snippet of a BPEL model that employs an HTTP-Request as IPA and a DPA that declares Chef statements.

4 REALIZATION USING BPEL

In this section, we prove that the presented ap-
proach is practically feasible by applying the inte-
grated modelling concept to the workflow standard
BPEL. Therefore, we (i) show how Imperative Provi-
sioning Activities can be realized using existing con-
structs and extensions of BPEL and how (ii) Declara-
tive Provisioning Activities can be modelled and ex-
ecuted using the so called “BPEL extension activ-
ities” (OASIS, 2007). The result is a Standards-
based Integrated Provisioning Modelling Language
that supports the direct orchestration of imperative
languages as well as declarative languages.

In general, we realize DPAs by applying the BPEL
concept of extension activities that allow to imple-
ment custom activity types in BPEL using program-
ming languages such as Java (Kopp et al., 2011).
BPEL-workflow runtimes support registering multi-
ple different types of extension activities including
their implementations. If the control flow of a work-
flow reaches an extension activity-element, its imple-
mentation is executed by the workflow engine and the
whole XML-content of the extension activity-element
in the BPEL model is passed to the implementation of
the extension activity as input. Thus, the concept en-
ables modelling arbitrary XML-definitions which are
parsed and interpreted by the extension activity im-
plementation. To select the right implementation, the
element name of the extension activity-element’s first
child serves as lookup key for the workflow engine.
Hence, we can realize arbitrary types of DPAs by im-
plementing small programs that are executed when
the control flow reaches one of these activities.

We show how IPAs und DPAs can be realized us-
ing extension activities by conducting an example.
A modeller, e. g., developers or operations person-
nel (Hüttermann, 2012), manually models an Inte-
grated Provisioning Model that consists of Declar-
ative as well as Imperative Provisioning Activities
where suitable. The XML shown in Listing 1 is an ex-
cerpt of a BPEL model that instantiates a virtual ma-
chine on the Cloud-offering Amazon EC2 and installs
an Apache Webserver on it. The instantiation of the
VM is modelled as activity that sends an HTTP-POST
request to the management API of Amazon2 (lines 1-
6). We employ here the BPEL4REST extension ac-
tivity approach (Haupt et al., 2014), which supports
defining output parameters: The Amazon API syn-
chronously returns the instance ID of the virtual ma-
chine in the HTTP response. As the provisioning of a
virtual machine takes some time, the ID can be used to
poll the status of the VM instantiation. Therefore, we
store the response in a process variable called “VM-
CreationResponse” (line 2). The implementation of
the extension activity reads this mapping and writes
the content of the HTTP response as value to the VM-
CreationResponse variable. This variable can be used
by other activities to monitor the current VM status
and to retrieve the IP-address of the running virtual
machine when the instantiation finished using similar
API calls (omitted in Listing 1).

After the VM is provisioned, a Chef-DPA installs
the Webserver on it (lines 8-16). This DPA defines
the attributes used in our previous example with iden-

2http://docs.aws.amazon.com/AWSEC2/latest/
APIReference/API_RunInstances.html

http://docs.aws.amazon.com/AWSEC2/latest/APIReference/API_RunInstances.html
http://docs.aws.amazon.com/AWSEC2/latest/APIReference/API_RunInstances.html

OpenTOSCA Runtime Environment

Workflow
Engine

Artifact
Manager

Cloud Provider B API

 Cloud Provider A

 API

VM …

…

HTTP

HTTP

Plan

Chef-DPA EA

HTTP-EA

SSH

CSAR
Importer

CSAR

Control Data Management …

Figure 3: Prototypical implementation of the integrated concept based on the OpenTOSCA runtime environment.

tical semantics. Similar to the HTTP extension activ-
ity, the extension activity implementation of the Chef-
DPA reads its XML fragment, extracts the relevant in-
formation, and enforces the declared goals by access-
ing the VM using SSH, installing a Chef agent, and
sending the declarative statements to this agent that
enforces them. In this example, the input parameter
concept is used to specify the target VM on which the
Webserver has to be installed and the credentials to
access the VM (line 9). The referenced BPEL vari-
ables of the workflow model are replaced by the ex-
tension activity implementation for execution. In ad-
dition, also the content injection concept is realized:
In line 11, a BPEL variable is specified as configura-
tion for the HTTP-port of the Webserver. Thus, when
executing the DPA, its implementation retrieves the
value of the “HTTPPort” workflow variable and re-
places the placeholder before enforcing the declared
configuration—similarly as for input parameters.

5 PROTOTYPE

To prove the technical feasibility of the presented
approach, we implemented a prototype based on the
OpenTOSCA ecosystem, which consists of the open-
source modelling tool Winery (Kopp et al., 2013), the
imperative runtime environment OpenTOSCA (Binz
et al., 2013), and the self-service portal Vinothek (Bre-
itenbücher et al., 2014). The system is based on the
TOSCA standard (OASIS, 2013), which enables de-
veloping application packages that are portable across
different platforms. TOSCA specifies a metamodel
for (i) describing the application’s structure as topol-
ogy model and (ii) enables using management work-
flows to provision and manage the modelled appli-
cations. In addition, TOSCA standardizes a package
format called CSAR that contains the topology model,
all management workflows, and all artifacts that are
required to provision and manage the described ap-
plication, e. g., application files or installation scripts.

CSARs can be created using the modelling tool Win-
ery. A CSAR is consumed by the OpenTOSCA run-
time which deploys the workflows contained therein.
Therefore, the runtime employs a workflow engine
(WSO2 BPS)3 to execute BPEL workflows. Using
the Vinothek, their execution can be triggered.

Figure 3 shows a simplified architecture of the
OpenTOSCA runtime environment including our pro-
totypical realization of the integrated modelling con-
cept. The CSAR Importer is responsible for consum-
ing CSARs and processing the contained data, e. g.,
by storing the models in local databases. The Con-
trol then triggers the local deployment of all man-
agement workflows so that they can be executed by
the Vinothek to provision a new application instance
or to manage a running instance. The concept pre-
sented in this paper is realized by implementing ex-
tension activity-plugins for the workflow engine. The
HTTP-extension activity, for example, can be used
in BPEL workflows to invoke management APIs of
providers to instantiate or manage virtual machines.
As described in the previous section, DPAs can then
use process variables to access these virtual machines
in order to install or configure software etc. To im-
plement these extension activities, e. g., the Chef-
DPA, we delegate executing the declaratively de-
scribed goals to a component called Artifact Manager.
This plugin-based manager is able to execute various
configuration management technologies such as Chef
or also imperative scripts, e. g., Bash scripts (Wet-
tinger et al., 2014). Thus, implementing IPAs and
DPAs is eased by invoking this manager. Of course,
arbitrary technologies can be integrated without us-
ing the manager, too. For modelling Integrated Provi-
sioning Models, we employ the modelling tool BPEL
Designer4. Since the prototype is based on TOSCA
and BPEL, it provides an end-to-end, standards-based
Cloud application management platform that enables
integrating various technologies seamlessly.

3http://wso2.com/products/
4https://eclipse.org/bpel/

http://wso2.com/products/
https://eclipse.org/bpel/

Table 1: Criteria Evaluation

Feature Declarative Imperative Integrated Approach
Full control x x
Complex deployments (x) (x) x
Hybrid and multi-Cloud applications (x) x x
Seamless integration x
Component wiring (x) x x
XaaS integration (x) x x
Full automation x x x
Straightforwardness x x
Extensibility (x) x x
Flexibility (x) (x)

6 EVALUATION

In this section, we evaluate the presented approach
by comparing it with the plain declarative and imper-
ative management flavors. For the comparison, we
reuse the management feature criteria for comparing
service-centric and script-centric management tech-
nologies (Breitenbücher et al., 2013) and additionally
add criteria that are derived from the features of each
flavor discussed in Section 2. As a result, the criteria
represent requirements that must be fulfilled to fully
automatically provision the kind of complex compos-
ite Cloud applications described in the introduction
(cf. Section 1). An “x” in Table 1 denotes that the
corresponding approach fully supports the criterion.
An “x” in parentheses denotes partial support.

Full control means that provisioning may be cus-
tomized arbitrarily by the process modeller in each
technical detail. As declarative approaches infer the
details about the execution by themselves, the general
provisioning logic cannot be changed easily. In con-
trast to this, imperative approaches explicitly model
each step to be performed and can be, therefore, cus-
tomized arbitrarily. Because the integrated approach
supports both, it fulfills this criterion completely.

Complex deployments denotes that real, non-
trivial business applications that employ various het-
erogeneous components and services can be deployed
using a technology of the flavor. Declarative ap-
proaches reach their limits at a certain point of re-
quired customizability: as the provisioning logic is in-
ferred by a general-purpose provisioning system, only
known declarative statements can be understood and
processed (cf. Section 2). Thus, if a very specific,
arbitrarily customized application structure or config-
uration has to be deployed, declarative approaches are
often not able to fulfill these rare and very special re-
quirements completely. The integration of low-level
execution code such as scripts partially solves this
problem. In contrast to this, based on the full control
criterion, in general arbitrary complex provisionings

can be described using imperative approaches such as
scripts or workflows. However, the technical com-
plexity of the resulting processes is often hardly man-
ageable and maintainable as the integration of tech-
nologies, as explained in Section 2, leads to a lot of
glue and wrapper code, which results in many lines of
process implementation code. Thus, plain imperative
approaches are not ideal for handling such cases com-
pletely and are, therefore, only partially suited. The
integration approach presented in this paper solves
these issues as the optimal technology can be chosen
without polluting the process with wrapper code.

The hybrid and multi-Cloud applications crite-
ria evaluate the support for applications that are ei-
ther hosted on (i) a combination of private and public
Cloud services or (ii) Cloud services offered by dif-
ferent providers. Since many declarative approaches
such as Amazon CloudFormation employ proprietary,
non-standardized domain-specific languages, many of
these technologies are not able to provision a dis-
tributed application as described above. General pur-
pose technologies such as TOSCA (OASIS, 2013) al-
low to provision hybrid as well as multi-Cloud appli-
cations, for example, by using the TOSCA plan gen-
erator (Breitenbücher et al., 2014). However, if multi-
ple providers are involved, typically their proprietary
languages have to be used as the declarative general-
purpose technologies are not able to support all indi-
vidual technical features. Based on the criteria full
control and complex deployments, the imperative as
well as the proposed approach fulfill this criterion.

Seamless integration evaluates the capability to
employ arbitrary management technologies without
(i) polluting the model or (ii) leading to abstracted
wrapper calls (cf. Section 2). As extensively dis-
cussed in the previous sections, neither declarative
nor imperative approaches natively support all re-
quired integration concepts. In contrast, the presented
approach fulfills this criterion due to the introduced
concept of Declarative Provisioning Activities.

The component wiring criterion means that multi-
ple application components can be wired. Declarative
approaches support this partially as unknown compo-
nents or complex wiring tasks cannot be described in
an arbitrary manner. The imperative as well as the in-
tegrated approach solve this issue as any task to wire
such components can be orchestrated arbitrarily.

XaaS integration means the ability to orchestrate
various kinds of Cloud services that represent appli-
cation components. Generic declarative approaches
support this only partially as complex configuration
tasks are hard to model. Proprietary approaches such
as Amazon CloudFormation are bound to a certain
provider and, therefore, require glue code to integrate
other services. The imperative and the presented ap-
proach fully support this requirement following the
argumentation of component wiring.

The full automation criterion is fulfilled by all
kinds of approaches, as all of them enable a fully au-
tomated provisioning of the described applications.

Straightforwardness evaluates, if describing the
provisioning of an application can be done in an effi-
cient manner requiring appropriate effort. The declar-
ative approaches are typically easy to learn, as techni-
cal complexity is shifted to the provisioning systems
and only the desired goals have to be specified. Imper-
ative approaches such as scripts or workflows quickly
become huge and complex due to the directly visi-
ble low-level details about the (i) control flow and the
(ii) data flow. In addition, in many cases, trivial steps
have to be modelled explicitly. The presented integra-
tion approach fulfills this criterion completely as the
optimal technology can be selected for a certain pro-
visioning task. Even a single DPA may be modelled
that declares all provisioning goals.

The extensibility criterion means the ability to in-
volve other management technologies. Declarative
approaches allow this by using glue code at certain
points in the inferred logic. Due to the full control
criterion, imperative approaches are able to include
arbitrary implementations at any point in the process.
Thus, the integrated approach supports this feature.

The declarative approaches do not support flexi-
bility due to the full control criterion. However, also
using imperative approaches are limited in terms of
flexibility: If a complex application leads to a huge
provisioning process, adapting this process is a chal-
lenging task. Therefore, imperative as well as the pre-
sented approach fulfill this criterion only partially. To
tackle these issues, we conduct research on modelling
situation-aware processes to increase the flexibility.

To summarize the evaluation, the presented ap-
proach profits from all benefits of the two provision-
ing flavors while solving drawbacks by the strengths

of each other. Whereas complex application provi-
sionings can be modelled in a flexible manner pre-
serving the full control over the provisioning, stan-
dard tasks can be modelled easily using declarative
specifications in a straightforward manner. Even dis-
tributed application structures, for example, hybrid
and multi-Cloud applications can be provisioned us-
ing the integrated approach described in this paper.
One of the most important criterion, the seamless inte-
gration of provisioning technologies, is solved by the
concept of Declarative Provisioning Activities while
imperative technologies are typically integrated al-
ready in existing languages. Thus, while the result-
ing process models are implemented in a standards-
compliant manner, intuitive provisioning modelling
helps developing and maintaining models.

6.1 Limitations

In this section, we discuss the limitations of the pre-
sented approach. A drawback is the tight coupling
of Integrated Provisioning Models to the structure of
the application to be provisioned. Imperative orches-
trations to provision the components of a certain ap-
plication structure are sensitive to structural changes:
Different combinations of components lead to differ-
ent models that must be created and maintained sepa-
rately (Breitenbücher et al., 2013; Eilam et al., 2011;
El Maghraoui et al., 2006). Thus, as the concept of
Integrated Provisioning Models is based on impera-
tively orchestrating the two kinds of provisioning ac-
tivities, this applies also for the approach presented
in this paper. As a result, Integrated Provisioning
Models for new applications often have to be created
from scratch while maintaining existing processes re-
sults in complex, time-consuming adaptations (Breit-
enbücher et al., 2014). To tackle this tight coupling
of imperative orchestrations and concrete structures,
we did research on generic process fragments for ap-
plication management, which can be reused for indi-
vidual applications (Breitenbücher et al., 2013; Breit-
enbücher et al., 2013). We plan to combine this ap-
proach with the presented concept. In addition, cur-
rently only the provisioning of applications is sup-
ported by our concept. Therefore, we plan to extend
the concept to support also management.

7 CONCLUSION

In this paper, we presented a process modelling
approach that enables the seamless integration of im-
perative and declarative provisioning models by in-
troducing the concepts of (i) Declarative Provision-

ing Activities and (ii) Integrated Provisioning Mod-
els. The approach enables intuitive provisioning mod-
elling without handling technical integration issues of
regarding different technologies and domain-specific
languages that pollute the control as well as the data
flow of the resulting workflow models. To prove the
technical feasibility of the approach, we applied the
presented concept to the workflow language BPEL
and extended the standards-based application man-
agement system OpenTOSCA. In addition, we eval-
uated its features by several criteria. The evaluation
shows that the presented approach enables to benefit
from strengths of both flavors. In future work, we plan
to apply the concept also for application management.

ACKNOWLEDGEMENTS

This work was partially funded by the projects
SitOPT (Research Grant 610872, DFG) and NEMAR
(Research Grant 03ET40188, BMWi).

REFERENCES

Binz, T., Breitenbücher, U., Kopp, O., and Leymann, F.
(2014). Migration of enterprise applications to the
cloud. it - Information Technology, Special Issue: Ar-
chitecture of Web Application, 56(3):106–111.

Binz, T. et al. (2013). OpenTOSCA – A Runtime for
TOSCA-based Cloud Applications. In ICSOC 2013,
pages 692–695. Springer.

Breitenbücher, U., Binz, T., Kopp, O., and Leymann, F.
(2013). Pattern-based runtime management of com-
posite cloud applications. In CLOSER 2013, pages
475–482. SciTePress.

Breitenbücher, U., Binz, T., Kopp, O., and Leymann, F.
(2014). Vinothek - A Self-Service Portal for TOSCA.
In ZEUS 2014, volume 1140 of CEUR Workshop Pro-
ceedings, pages 69–72. CEUR-WS.org.

Breitenbücher, U., Binz, T., Kopp, O., Leymann, F., and
Wettinger, J. (2013). Integrated cloud application pro-
visioning: Interconnecting service-centric and script-
centric management technologies. In CoopIS 2013,
pages 130–148. Springer.

Breitenbücher, U. et al. (2014). Combining Declarative and
Imperative Cloud Application Provisioning based on
TOSCA. In IC2E 2014, pages 87–96. IEEE.

Eilam, T., Elder, M., Konstantinou, A., and Snible, E.
(2011). Pattern-based composite application deploy-
ment. In IM 2011, pages 217–224. IEEE.

El Maghraoui, K., Meghranjani, A., Eilam, T., Kalantar, M.,
and Konstantinou, A. V. (2006). Model driven provi-
sioning: bridging the gap between declarative object
models and procedural provisioning tools. In Middle-
ware 2006, pages 404–423. Springer.

Günther, S., Haupt, M., and Splieth, M. (2010). Utilizing
Internal Domain-Specific Languages for Deployment
and Maintenance of IT Infrastructures. Technical re-
port, Very Large Business Applications Lab Magde-
burg, Otto von Guericke University Magdeburg.

Haupt, F., Fischer, M., Karastoyanova, D., Leymann, F., and
Vukojevic-Haupt, K. (2014). Service Composition for
REST. In EDOC 2014. IEEE.

Herry, H., Anderson, P., and Wickler, G. (2011). Auto-
mated planning for configuration changes. In LISA
2011. USENIX.

Hüttermann, M. (2012). DevOps for Developers. Apress.
Keller, A., Hellerstein, J. L., Wolf, J. L., Wu, K. L., and Kr-

ishnan, V. (2004). The champs system: change man-
agement with planning and scheduling. Network Op-
erations and Management Symposium, 2004, pages
395–408.

Kopp, O., Binz, T., Breitenbücher, U., and Leymann, F.
(2012). BPMN4TOSCA: A Domain-Specific Lan-
guage to Model Management Plans for Composite
Applications. In Business Process Model and Nota-
tion, pages 38–52. Springer.

Kopp, O., Binz, T., Breitenbücher, U., and Leymann, F.
(2013). Winery – A Modeling Tool for TOSCA-based
Cloud Applications. In ICSOC 2013, pages 700–704.
Springer.

Kopp, O. et al. (2011). A Classification of BPEL Exten-
sions. Journal of Systems Integration, 2(4):2–28.

Levanti, K. and Ranganathan, A. (2009). Planning-based
configuration and management of distributed systems.
In IM 2009, pages 65–72.

Leymann, F. (2009). Cloud Computing: The Next Revo-
lution in IT. In Proc. 52th Photogrammetric Week,
pages 3–12.

Leymann, F. and Roller, D. (2000). Production workflow:
concepts and techniques. Prentice Hall PTR.

Mietzner, R. (2010). A method and implementation to define
and provision variable composite applications, and its
usage in cloud computing. Dissertation, University of
Stuttgart, Germany.

Nelson-Smith, S. (2013). Test-Driven Infrastructure with
Chef. O’Reilly Media, Inc.

OASIS (2007). Web Services Business Process Execution
Language (WS-BPEL) Version 2.0. OASIS.

OASIS (2013). Topology and Orchestration Specification
for Cloud Applications Version 1.0.

OMG (2011). Business Process Model and Notation
(BPMN), Version 2.0.

Opscode, Inc. (2015). Chef official site:
http://www.opscode.com/chef.

Petcu, D. (2014). Consuming resources and services
from multiple clouds. Journal of Grid Computing,
12(2):321–345.

Puppet Labs, Inc. (2015). Puppet official site:
http://puppetlabs.com/puppet/what-is-puppet.

Wettinger, J. et al. (2014). Unified Invocation of Scripts
and Services for Provisioning, Deployment, and Man-
agement of Cloud Applications Based on TOSCA. In
CLOSER 2014, pages 559–568. SciTePress.

